Abstract

Cartilaginous fish are the oldest extant jawed vertebrates and the oldest line to have placentae. Their pivotal evolutionary position makes them attractive models to investigate the mechanisms involved in the maternal-fetal interaction. This study describes the tissue expression of the cytokine interlukin-1 (IL-1) α, IL-1 β and its specific membrane receptor, IL-1 receptor type I (IL-1R tI) in a placental cartilaginous fish, the smoothhound shark, Mustelus canis. The presence of this cytokine has been reported in many mammalian placentae, as well as in the placenta of a squamate reptile and this study extends these observations to the cartilaginous fishes. The uteroplacental complex in M. canis consists of a yolk sac modified into a functional yolk sac placenta and complimentary uterine attachment sites. Immunohistochemistry for IL-1 α, IL-1 β and the receptor reveals leucocytes of both the mother and fetus to be positive, as well as the apical aspect of paraplacental cells and the apical vesicles in the umbilical cord epithelium. Yolk sac endoderm is also positive with all the stains while the ectoderm is positive only for IL-1 α. Immunoreactivity in the uterine epithelium was obtained for IL-1 α and the receptor. The egg envelope is always negative.In light of the recent finding of IL-1 β gene in a cartilaginous fish and of the high level of conservation of proteins implicated in IL-1 action, our data suggest that IL-1 system is a key mediator of the materno-fetal interaction since the oldest extant placental vertebrates.

Highlights

  • Viviparity is a widespread reproductive mode among vertebrates, involving retention of the embryo within the female reproductive tract and giving birth to living young

  • The distal aspect of the yolk sac placenta abuts the uterine epithelium at special foci termed uterine attachment sites

  • Yolk sac placentation is limited to a few members of the Families Triakidae, the houndsharks; Family Carcharinidae, the requiem sharks and Family Sphyrinidae, the hammerhead sharks [21]

Read more

Summary

Introduction

Viviparity is a widespread reproductive mode among vertebrates, involving retention of the embryo within the female reproductive tract and giving birth to living young. Viviparity may involve the formation of a placenta, a structure formed by the apposition of extra-embryonic membranes and maternal tissues [1]. Viviparity is advantageous for the nourishment and growth of offspring, it involves an immunological risk for the semi-allogenic fetus. Prolonged exposure of embryonic tissues bearing paternal antigens to maternal uterine tissues can cause rejection of the embryo [2,3]. Among immunological mechanisms to protect the fetus and its growth in the maternal tissues, the local release of immunoregulatory peptides (cytokines) seems to play a primary role [4,5]. Cytokines and cytokine receptors are expressed in mammalian placentae independently of the (page number not for citation purposes)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call