Abstract
The meteorite Sariçiçek, a 2015 howardite fall in Turkey, was analyzed using various physical techniques. Both the interior and the fusion crust were studied by optical and scanning electron microscopy with energy dispersive spectroscopy, X-ray diffraction, magnetization measurements and Mössbauer spectroscopy. The main and minor iron-bearing phases such as orthopyroxene, Ca-poor and Ca-rich clinopyroxene, chromite with hercynite, Fe2+ and Fe3+ ilmenite, troilite, α-Fe(Ni, Co), α2-Fe(Ni, Co) and γ-Fe(Ni, Co) phases were identified. The ratios of Fe2+ occupancies in the M1 and M2 sites in the silicate phases as well as the equilibrium Fe2+ and Mg2+ cations distribution temperatures (Teq) for orthopyroxene were estimated using X-ray diffraction and Mössbauer spectroscopy, which appeared to be in a good agreement: for example, Teq were 886 and 878K, respectively. The glass-like fusion crust of Sariçiçek consists of orthopyroxene with ferrous and ferric compounds that are likely products of combustion and melting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.