Abstract

Porcine reproductive and respiratory syndrome virus (PRRSV) causes one of the most economically important diseases of swine in the world. Current vaccination strategies provide only limited protection against PRRSV infection. Recently, myxovirus resistance 2 (Mx2) has been identified as a novel interferon (IFN)-induced, innate immunity restriction factor that inhibits some viral infections. However, the role of Mx2 in PRRSV infection is not well understood. In this study, we cloned the full-length monkey Mx2 (mMx2) complementary DNA (cDNA) from IFN-β-treated African green monkey Marc-145 cells, and found that overexpression of mMx2 inhibited PRRSV replication in Marc-145 cells. IFN-β induced expression of mMx2 in Marc-145 cells and suppressed PRRSV replication in a dose-dependent manner. Knockdown of mMx2 impaired the antiviral activity mediated by IFN-β. Confocal imaging and immunoprecipitation assays indicated that mMx2 interacted with PRRSV N protein in virus-infected cells. Furthermore, we showed that GTPase activity of mMx2 is necessary, but that the first N-terminal 51 amino acids are dispensable for antiviral activity. Finally, porcine Mx2 was also found to have the antiviral activity against PRRSV in Marc-145 cells. We conclude that mMx2 protein inhibits PRRSV replication by interaction with the viral N protein.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call