Abstract
Arsenic (As) contamination in groundwater is a significant health and environmental concern worldwide because of its wide distribution and toxicity. The fate and mobility of As is greatly influenced by its interaction with redox-active mineral phases, among which green rust (GR), an FeII-FeIII layered double hydroxide mineral, plays a crucial role. However, the controlling parameters of As uptake by GR are not yet fully understood. To fill this gap, we determined the interfacial reactions between GR sulfate (GRSO4) and aqueous inorganic As(III) and As(V) through batch adsorption experiments, under environmentally-relevant groundwater conditions. Our data showed that, under anoxic conditions, GRSO4 is a stable and effective mineral adsorbent for the removal of As(III) and As(V). At an initial concentration of 10 mg L−1, As(III) removal was higher at alkaline pH conditions (~95% removal at pH 9) while As(V) was more efficiently removed at near-neutral conditions (>99% at pH 7). The calculated maximum As adsorption capacities on GRSO4 were 160 mg g−1 (pH 8–9) for As(III) and 105 mg g−1 (pH 7) for As(V). The presence of other common groundwater ions such as Mg2+ and PO43− reduces the efficiency of As removal, especially at high ionic strengths. Long-term batch adsorption experiments (up to 90 days) revealed that As-interacted GRSO4 remained stable, with no mineral transformation or release of adsorbed As species. Overall, our work shows that GRSO4 is one of the most effective As adsorbents among iron (oxyhydr)oxide phases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.