Abstract

A non-hydrostatic numerical model forced by tides has been adapted to the Strait of Gibraltar area to investigate the dynamics of the interface layer in the eastern part of the strait, namely the area that extends from the main sill of Camarinal to the eastern exit of the strait. The model reproduces the tidal oscillations of the interface thickness and the mean depth, showing that the westward barotropic tide raises the interface and reduces its thickness, thus being the physical mechanism that re-stratifies the water column. Several processes are involved in the thickening and sinking tidal phase of the interface: (1) the eastward horizontal advection from Tangier basin, located west of Camarinal sill, where the huge dissipation associated with hydraulic transitions generates a remarkable mixing layer, (2) entrainment as the interface waters progress towards the Mediterranean Sea and (3) internal friction associated with the large amplitude internal waves radiated into the Mediterranean. Some biologically-related implications of the interface dynamics are also examined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.