Abstract

AbstractDewetting is one of the most common damage modes in particulate filled polymer composite, which greatly damages the structural integrity of the composite and leads to the deterioration of its mechanical properties. Studying the dewetting evolution process of composite is of great significance for evaluating the meso damage degree of composite and suppressing the development of dewetting damage. This article constructs an axisymmetric cylindrical cell model of a single particle inclusion matrix, derives the interface dewetting evolution process of the model under uniaxial tensile loading condition, and analyzes the influence of model geometric parameters and external loading conditions on the dewetting process. Subsequently, numerical models were constructed at both micro and meso scales, and dynamic tensile calculations were performed to analyze the correlation between the dewetting rate, porosity, and mechanical performance. Finally, a cylindrical cell specimen was designed to observe the interface dewetting evolution under uniaxial tensile conditions, confirming the conclusions of theoretical analysis and numerical simulation.Highlights Constructed a theoretical model for the dewetting process of interface. Conducted numerical analysis of dewetting process at both meso and micro scales. Designed interface dewetting experiment and analyzed the dewetting process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.