Abstract

This paper studies the interdeparture time distribution of one class of customers who arrive at a single server queue where customers of several classes are served and where the server takes a vacation whenever the system becomes empty or is empty when the server returns from a vacation. Furthermore, the first customer in the busy period is allowed to have an exceptional service time (set-up time), depending on the class to which this customer belongs. Batches of customers of each class arrive according to independent Poisson processes and compete with each other on a FIFO basis. All customers who belong to the same class are served according to a common generally distributed service time. Service times, batch sizes and the arrival process are all assumed to be mutually independent. Successive vacation times of the server form independent and identically distributed sequences with a general distribution. For this queueing model we obtain the Laplace transform of the interdeparture time distribution for each class of customers whose batch size is geometrically distributed. No explicit assumptions of the batch size distributions of the other classes of customers are necessary to obtain the results. The paper ends by showing how the mathematical results can be used to evaluate a protocol that controls access to a shared medium of an ATM passive optical network. The numerical results presented in the last section of this paper show that the bundle spacing principle that is used by the permit distribution algorithm of this protocol introduces high delays and in many cases also more variable interdeparture times for the ATM cells of individual connections. An alternative algorithm is proposed that does not cope with these performance short comings and at the same time conserves the good properties of the protocol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.