Abstract

Eastern China has a large population with rapid development of the economy, where is the important crop producing region. In this region, the spatial and temporal distribution of autumn rainfall in Eastern China is uneven, which has important societal impact. Using the NCEP–NCAR reanalysis and other observational datasets, it is found that the spatial distribution of the first EOF mode of autumn rainfall anomalies in eastern China is consistent across the region, with significant interannual variabilities. Pronounced interdecadal variations are presented in the relationship between autumn rainfall anomalies in eastern China and sea-surface temperature anomaly (SSTA) over the southeastern tropical Indian Ocean (SETIO). The interdecadal changes have been analyzed by considering two epochs: one during 1979–2004 and the other during 2005–2019. It shows weak and insignificant correlations between the autumn rainfall anomalies in eastern China and SSTA over SETIO during the first epoch. On the other hand, they are remarkable and positively correlated with each other during the second epoch. The inter-decadal changes of the above relationship are related to the warming of SST over SETIO during the second epoch. It causes stronger low-level convergence and ascending motion over SETIO, with the co-occurrence of enhanced western Pacific subtropical high and anomalous abundant moisture over eastern China carried by a low-level southerly anomaly originating from the South China Sea. Simultaneously, the local Hadley circulation over eastern China becomes weak, corresponding to the anomalous ascending motion. The collaboration of anomalous water vapour transport and ascending motion strengthens the connection between the SETIO SSTA and the autumn precipitation anomalies in eastern China, and vice versa. In the boreal autumn of 2019, entire eastern China suffered extreme drought. It suggests that this drought event in eastern China is strongly affected by the negative SSTA over SETIO, which is consistent with the statistical results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call