Abstract
Ethidium bromide was first described as a DNA intercalator 60 years ago and, over the ensuing years, may be the most widely used fluorescent DNA stain in molecular biology, biochemistry, and histology. Noncovalent DNA binding by ethidium has been well characterized, but to date, there have been no reports of covalent DNA adduct formation by ethidium bromide. This report describes the characterization of covalent adducts generated by the reaction of ethidium with apurinic/apyrimidinic (AP) sites in DNA. Adduct formation proceeds via the reaction of the amino group(s) on ethidium with the ring-opened aldehyde residue of the AP site in DNA to yield an imine. Ethidium-AP adducts may form under a variety of circumstances due to the ubiquitous occurrence of AP sites in cellular and synthetic DNA.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.