Abstract

The effects of pH, potentially toxic metals, and dissolved organic carbon (DOC) on a freshwater, palustrine wetland assemblage (three amphibian species, one mosquito genus, and 18 genera of algae) were examined in 500 liter outdoor mesocosms. The design was fully factorial and exposure levels were set to represent concentrations that occur naturally in temporary ponds in central Pennsylvania, an acid-impacted region of the USA. Water chemistry was precisely regulated by use of an artificial pond water rather than using stream water or well water with partially unknown composition. Jefferson ( Ambystoma jeffersonianum) and spotted salamanders ( A. maculatum) were negatively impacted by low pH and high metal concentrations. Wood frogs ( Rana sylvatica) were negatively impacted by high DOC and low pH. These negative effects included increased time to metamorphosis and decreased survival and wet body mass at metamorphosis. Mosquito emergence was unaffected by pH, metals, or DOC. All three abiotic factors (metals, pH, and DOC) interacted to determine algal taxonomic composition. Hence, abiotic conditions may determine amphibian reproductive success both directly and indirectly, via effects on algae, since a primary food source of salamanders, zooplankton, are affected by changes in algal composition. These complex interactions should be considered in evaluating the possible toxicity of pond waters to fauna and flora. Until now, pH alone has been considered the primary limiting factor for amphibians breeding in temporary ponds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call