Abstract

High-aspect-ratio microholes have many important applications, but their drilling is very challenging. Femtosecond (fs) laser ablation provides a potential solution, but involves many complicated physical processes that have not been well understood, which have hindered its practical application. One of these is that the plasma induced by laser ablation at the hole bottom will transfer some of its energy to the hole sidewall as it expands in the microhole. The plasma–sidewall interaction has been rarely studied in literature, and it is still not clear if or not the energy transferred from the plasma is sufficient to cause significant material removal from the sidewall. Direct time-resolved observations are extremely difficult due to the small temporal/spatial scales and the spatial constraint inside the hole, while the sidewall characterization after laser ablation is difficult to distinguish between the possible material removal due to plasma energy transfer and that due to direct laser energy absorption by the sidewall. In this paper, a physics-based model is applied as the investigation tool to study the plasma–sidewall interaction in fs laser drilling of high-aspect-ratio microholes. It has been found that for the studied conditions the energy transferred from the plasma is not sufficient to cause significant material removal from the sidewall through any thermally induced phase change process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.