Abstract

Interactions of cytochrome P450 2C9 (CYP2C9) were studied with the antitumor drug abiraterone and its pharmacologically active metabolite D4A, promising as an agent for prostate cancer treatment. It was shown by absorption spectroscopy, that both investigated compounds induced spectral changes of CYP2C9, indicating interactions of the pyridine nitrogen atom with the heme iron ion of the active site of the enzyme, but interactions of the ligands with the enzyme could be mediated by a water molecule bound to the heme iron ion. Based on the spectral changes, the values of dissociation constants (KS) for complexes of abiraterone and D4A with CYP2C9 were calculated as 1.73±0.14 μM and 3.95±0.16 μM. Both compounds inhibited O-demethylase activity of CYP2C9 towards its substrate. At 100 μM concentration of naproxen the concentrations of abiraterone, D4A and sulfaphenazole inhibiting CYP2C9 activity by 50% (IC50) were determined as 13.9 μM, 40 μM and 41 μM, respectively. The obtained results can be used for prognosis of drug-drug interactions at CYP2C9 level during administration of abiraterone or D4A as an antitumor agent for prostate cancer treatment in complex pharmacotherapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.