Abstract

The interactions of pharmacologically active 3-keto-Δ4-metabolite of anticancer drug abiraterone (D4A) with steroid-metabolizing cytochromes P450 (CYP51A1, CYP11A1, CYP19A1) was studied by absorption spectroscopy and molecular docking. Both abiraterone and D4A induce type I spectral changes of CYP51A1, one of the enzymes of cholesterol biosynthesis. We have revealed that D4A did not induce spectral changes of CYP11A1, the key enzyme of pregnenolone biosynthesis, unlike abiraterone (type II ligand of CYP11A1). On the contrary, D4A interacts with the active site of CYP19A1, the key enzyme of estrogen biosynthesis, inducing type II spectral changes, while abiraterone does not. Spectral analysis allowed us to calculate spectral dissociation constant (KS) for each complex of cytochrome P450 with respective ligands. The data were supported by molecular docking. The obtained results broaden understanding of interactions of D4A with some of the key steroid-metabolizing cytochromes P450 and allow one to predict possible disproportions of steroid metabolism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.