Abstract

This study investigates the impact of cellulose-derived polymers, anionic carboxymethylcellulose (CMC), and cationic cellulose (CC) on the colloidal and thermal stability of zeolite Na-X materials. By exploring polymer adsorption onto Na-X surfaces and characterising the resultant materials, using FT-IR, XPS, SEM, PSD, CHN, and zeta potential, the research unveils how CMC and CC modify zeolite properties. This investigation elucidates the potential roles of these polymers in colloidal systems with zeolites, revealing their promise for crafting organic-inorganic materials. Additional insight was also provided by careful examination of the thermal stability (TGA-DSC) of the obtained cellulose/zeolite materials. Furthermore, the study distinguishes the different adsorption mechanisms of CMC and CC, with CMC relying on some weak interactions (H-bonding and van der Waals forces), while CC interacts mainly via electrostatic forces. Both CMC and CC can act as stabilizing agents, with CMC being more efficient and using both electrosteric and depletion stabilizations. Importantly, the concentration of CC plays a role in bridging flocculation, highlighting the concentration-dependent nature of the stabilization mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.