Abstract

The interaction potential for the ground and A Rydberg state of NO-H2 has been calculated using high level ab initio methods. The complex is very floppy in nature and large amplitude motions are expected to characterize its dynamics. The ground state is characterized by two very close-lying states which exhibit crossings. By analogy with other complexes the Rydberg state is characterized by much smaller well depth and larger intermolecular distance. We compare with model potentials used in previous molecular dynamics simulations of photoexcitation and relaxation and conclude on the importance of performing new studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.