Abstract

This paper presents the results of an experimental investigation of the effects of a piston vortex on the vorticity evolution of a vortex ring. The rings are produced by the roll-up of a shear layer at a circular orifice in a plane wall and have a Reynolds number of 2000 based on the ejection velocity and orifice diameter. The generation mechanism is a piston moving inside a cylinder with a stroke length of two piston diameters. The experimental apparatus is similar to that used by Glezer & Coles (1990) where the piston finishes flush with the orifice, with the result that a piston vortex produced by the apparatus interacts with the vortex ring. Instantaneous velocity field measurements using cross-correlation digital particle image velocimetry reveal that the piston vortex not only increases the circulation of the ring but also creates an asymmetric vorticity distribution of the vortex core. It is found that ‘imperfect’ merging of the piston vortex with the primary vortex ring promotes the growth of an instability which leads to early transition to turbulence of initially laminar vortex rings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call