Abstract

GGA proteins regulate clathrin-coated vesicle trafficking by interacting with multiple proteins during vesicle assembly. As part of this process, the GAT domain of GGA is known to interact with both ARF and Rabaptin-5. Particularly, the GAT domains of GGA1 and -2, but not of GGA3, specifically bind with a coiled-coil region of Rabaptin-5. Rabaptin-5 interacts with Rab5 and is an essential component of the fusion machinery for targeting endocytic vesicles to early endosomes. The recently determined crystal structure of the GGA1 GAT domain has provided insights into its interactions with partner proteins. Here, we describe mutagenesis studies on the GAT-Rabaptin-5 interaction. The results demonstrate that a hydrophobic surface patch on the C-terminal three-helix bundle motif of the GAT domain is directly involved in Rabaptin-5 binding. A GGA3-like mutation, N284S, in this Rabaptin-5 binding patch of GGA1 led to a reduced level of Rabaptin-5 binding. Furthermore, a reversed mutation, S293N, in GGA3 partially establishes Rabaptin-5 binding ability in its GAT domain. These results provide a structural explanation for the binding affinity difference among GGA proteins. The current results also suggest that the binding of GAT to Rabaptin-5 is independent of its interaction with ARF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.