Abstract

The bioactivity of enzymes is sensitive to certain factors in their application environment, such as the pH, temperature, ionic strength, and additives, which can alter the native conformation of enzymes. To determine the mechanism by which the interaction of SDS influences the structure and activity of trypsin, molecular docking, molecular dynamics simulations, DSC, and multi-spectroscopic measures including UV absorption, fluorescence, and circular dichroism were used. The results show that the hydrolytic activity towards casein could be dramatically restrained by SDS. UV absorption, CD, and fluorescence spectra demonstrated the formation of a trypsin–SDS complex. Thermodynamic parameters and molecular docking data revealed that the binding process was spontaneous, and that the main binding forces between SDS and trypsin were hydrogen bonds and van der Waals forces. In addition, molecular docking predicted that the binding site of SDS on trypsin was located at the active center. Molecular dynamic simulations showed that treatment with SDS resulted in the structure of trypsin becoming unstable and unfolded near its active center. This work provides insights into the interaction of SDS with trypsin on the molecular level and is beneficial to understanding of how SDS affects the conformation and activity of trypsin in application processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.