Abstract

The persistence of prions within the environment is implicated in the horizontal transmission of ovine scrapie and cervid chronic wasting disease. Description of the interaction of prion strains derived from their natural hosts with a range of soil types is imperative in understanding how prions persist in the environment and, therefore, the characteristics of prion transmission. Here, we demonstrate that all detectable ovine scrapie and bovine BSE PrP(Sc) bind to a range of soil types within 24 h. This highly efficient binding of prions to soils is characterized by truncation of desorbed PrP(Sc) in a soil-dependent manner, with clay-rich soils resulting in N-terminal truncation of the PrP(Sc) and sand-rich soils yielding full length PrP(Sc) species. PrP(Sc) did not migrate through soil columns during incubation for up to 18 months, and for all combinations of soil and prion types, a decrease in recoverable PrP(Sc) was seen over time. Persistence of PrP(Sc) within soil and their interaction with soil particles of distinct sizes was dictated by both the soil type and the source of the prion, with ovine scrapie being apparently more persistent in some soils than cattle BSE. These data indicate that natural ruminant prion strains are stable in the soil environment for at least 18 months and that PrP(Sc)-soil interaction is dictated by both the soil properties and the strain/host species of PrP(Sc).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call