Abstract

PurposeThe present research investigates the influence of P11 gene DNA methylation combined with life stress on the response to antidepressants in the first two weeks. MethodsA total of 291 Han Chinese patients with major depressive disorder and 100 healthy controls were included. The Life Events Scale and the Childhood Trauma Questionnaire were used to assess stress. The primary endpoint was the Hamilton Depression Rating Scale-17 reduction rate after two weeks of treatment. The Illumina HiSeq Platform was used to detect the methylation of 74 CpG sites of the P11 gene in peripheral blood samples. ResultsThe mean methylation of all P11 CpG sites, as well as the methylation at 4 CpG sites (P11-2-169, P11-2-192, P11-2-202, P11-2-204), were significantly higher in patients with MDD than in healthy controls (FDR-corrected P < 0.05). The response to antidepressants was associated with the following interactions: the CTQ score and P11-3-185 site methylation (OR = 0.297, FDR-corrected P = 0.023), the CTQ physical neglect score and P11-2-117 site methylation (OR = 0.005, FDR-corrected P = 0.033), and the CTQ emotional abuse score and P11-3-185 site methylation (OR = 0.001, FDR-corrected P = 0.023). ConclusionsThe methylation of the P11 gene was significantly higher in patients with major depressive disorder. The interaction of P11 DNA methylation and early-life stress may influence the short-term antidepressant treatment response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.