Abstract

The effectiveness of bioretention cells for heavy metals (HMs) and microplastics (MPs) removal from stormwater runoff has been demonstrated. Knowledge of the mechanisms that dictate the interactions between MPs and HMs would be helpful in pollution control. In this study, the performances of different water-soil-plant bioretention cells for HMs removal through the interception of polyethylene MPs (PE-MPs) were investigated. The results showed that PE-MPs bound to HMs and preferentially tended to bind to Pb (32%–44%) in the complex HMs (Cu, Zn, Cd, and Pb). This could be the reason that the concentration of Pb significantly increased in the effluent under low-intensity simulated rainfall events over a long duration. The accumulation of 1.49 g/kg PE-MPs caused a significant soil pH value decrease and a notable soil zeta potential increase in the bioretention cell, while the low sand/silt ratio media buffered this process. The retention of PE-MPs increased 138.5% in the 0–10 cm soil surface layer when the sand/silt ratio reduced from 2:1 to 1:1 and planted with Canna indica. Meanwhile, PE-MPs amplified the instability of Zn removal in bioretention cells under low-intensity rainfall events in long-duration, high silt percentage substrate and vegetation coverage. The study would contribute to developing a long-term management program for PE-MPs and HMs trapped in bioretention cells to reduce the risk of pollution transport.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.