Abstract
SPECTRAL LINES In 1835 a French philosopher, Auguste Comte (1798–1857), considered the limits of human knowledge. In his book Positive Philosophy , Comte wrote of the stars, “We see how we may determine their forms, their distances, their bulk, their motions, but we can never know anything of their chemical or mineralogical structure.” Thirty-three years earlier, however, WilliamWollaston (1766–1828), like Newton before him, passed sunlight through a prism to produce a rainbow-like spectrum. He discovered that a number of dark spectral lines were superimposed on the continuous spectrum where the Sun's light had been absorbed at certain discrete wavelengths. By 1814, the German optician Joseph von Fraunhofer (1787–1826) had cataloged 475 of these dark lines (today called Fraunhofer lines ) in the solar spectrum. While measuring the wavelengths of these lines, Fraunhofer made the first observation capable of proving Comte wrong. Fraunhofer determined that the wavelength of one prominent dark line in the Sun's spectrum corresponds to the wavelength of the yellow light emitted when salt is sprinkled in a flame. The new science of spectroscopy was born with the identification of this sodium line. Kirchhoff's Laws The foundations of spectroscopy were established by Robert Bunsen (1811–1899), a German chemist, and by Gustav Kirchhoff (1824–1887), a Prussian theoretical physicist. Bunsen's burner produced a colorless flame that was ideal for studying the spectra of heated substances. He and Kirchhoff then designed a spectroscope that passed the light of a flame spectrum through a prism to be analyzed. The wavelengths of light absorbed and emitted by an element were found to be the same; Kirchhoff determined that 70 dark lines in the solar spectrum correspond to 70 bright lines emitted by iron vapor. In 1860 Kirchhoff and Bunsen published their classic work Chemical Analysis by Spectral Observations , in which they developed the idea that every element produces its own pattern of spectral lines and thus may be identified by its unique spectral line “fingerprint.” Kirchhoff summarized the production of spectral lines in three laws, which are now known as Kirchhoff's laws : • A hot, dense gas or hot solid object produces a continuous spectrum with no dark spectral lines. • A hot, diffuse gas produces bright spectral lines ( emission lines ). • Acool, diffuse gas in front of a source of a continuous spectrum produces dark spectral lines ( absorption lines ) in the continuous spectrum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.