Abstract
A stochastic, individual-based, simulation model of footrot in a flock of 200 ewes was developed that included flock demography, disease processes, host genetic variation for traits influencing infection and disease processes, and bacterial contamination of the environment. Sensitivity analyses were performed using ANOVA to examine the contribution of unknown parameters to outcome variation. The infection rate and bacterial death rate were the most significant factors determining the observed prevalence of footrot, as well as the heritability of resistance. The dominance of infection parameters in determining outcomes implies that observational data cannot be used to accurately estimate the strength of genetic control of underlying traits describing the infection process, i.e. resistance. Further work will allow us to address the potential for genetic selection to control ovine footrot.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.