Abstract

The ability of actin to interact with hemin was studied. It was found that the Soret absorption band of hemin changes in the presence of actin and that hemin is capable of quenching the fluorescence intensity of actin. These findings were indicative of hemin binding to actin. The binding constant for the high affinity site was calculated to be 5,3·10 M −1. The amounts of native G- and F-actin were estimated by their DNAase I inhibition activity. It was observed that the binding of hemin to G-actin is followed by a slow decrease in the ability of actin to inhibit DNAase I activity and to polymerize upon addition of salts. Binding of hemin to F-actin resulted in a gradual depolymerization of the filaments, to an inactivated form, as expressed by a reduction in the ability of hemin-bound F-actin to inhibit DNAase I activity in the absence as well as in the presence of guanidine-HCl. Electron microscopy studies further corroborated these findings by demonstrating that: (1) hemin-bound G-actin failed to show formation of polymers when salts were added; (2) a marked reduction in the amount of actin polymers was observed in the specimens examined 24 h after mixing with hemin. It is suggested that the elevated amounts of free hemin formed under pathological conditions, might be toxic to cells by interfering with actin polymerization cycles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call