Abstract
In this research, the interactions of HCN gas with pristine, Ga-, N- and GaN-doped of boron phosphide nanotube (BPNTs) were investigated by using density function theory (DFT). The structure, electrical and NQR parameters, quantum descriptors involving energy gap, global hardness, global softness, electrophilicity, electronic chemical potential and electronegativity were calculated. The adsorption energy values of the AI-BIV models were negative and the adsorption process was exothermic. GaN-doped impurity atoms increased the adsorption of HCN gas on the surface of nanotube and the GaN-doped model was favorable than other models. The NQR parameters of the fourth layer of pristine and N-doped models were more than those of other models due to the change of the geometrical parameters. The energy gap between LUMO and HOMO orbital changed slightly from 2.83-3.09 eV, with adsorption of HCN gas on the surface of BPNTs. The global hardness and ionization potential and natural charge of NBO calculations showed a charge transfer from the HCN molecule (nucleophile agent) to the nanotube models (electrophile agent).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.