Abstract

Purpose : This study was performed to characterize the interaction of epidermal growth factor and radiation in two human head and neck squamous cell cancer cell lines of vastly different radiosensitivities (UM-SCC-6 Radiosensitive; UM-SCC-1 radioresistant). Methods and Materials : The two human head and neck squamous cell cancers (UM-SCC-1 and UM-SCC-6) were grown in medium and following the appropriate treatments, cell survival was assessed by a standard colony formation assay. Growth inhibition was assessed by monitoring cell counts following treatment and flow cytometry was used to assess cell cycle distributions. Results and Conclusion : It was determined that exposure to epidermal growth factor (10 ng/ml) for 24 h prior to radiation resulted in radiosensitization in both cell lines, however, the magnitude of radiosensitization was greater in the radiosensitive UM-SCC-6 cells compared to the radioresistant UM-SCC-1 cells. Treatment of the UMSCC-6 cells with epidermal growth factor (EGF) (10 ng/ml) for 24 h resulted in a growth delay, however, cell growth returned to normal approximately 24 h following removal of EGF. Similar treatment of the UM-SCC-1 cells resulted in no growth inhibition. The 24 h preradiation exposures to EGF (10 ng/ml) did not affect the radiation-induced growth delay in either cell line. Additionally, the 24 h exposures to EGF (10 ng/ml) did not cause the cells to enter a more radiosensitive cell cycle phase. Further work will be necessary to determine whether events associated with the EGF-induced growth delay in the UM-SCC-6 cells are associated with the enhanced EGF-induced radiosensitization in these cells compared to UM-SCC-1 cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.