Abstract

The interaction of CO with structurally well-defined PdAg/Pd(111) surface alloys was investigated by temperature-programmed desorption (TPD) and high-resolution electron energy loss spectroscopy (HREELS) to unravel and understand contributions from electronic strain, electronic ligand and geometric ensemble effects. TPD measurements indicate that CO adsorption is not possible on the Ag sites of the surface alloys (at 120 K) and that the CO binding strength on Pd sites decreases significantly with increasing Ag concentration. Comparison with previous scanning tunneling microscopy (STM) data on the distribution of Pd and Ag atoms in the surface alloy shows that this modification is mainly due to geometric ensemble effects, since Pd(3) ensembles, which are the preferred ensembles for CO adsorption on non-modified Pd(111), are no longer available on Ag-rich surfaces. Consequently, the preferred CO adsorption site changes with increasing Ag content from a Pd(3) trimer via a Pd(2) dimer to a Pd monomer, going along with a successive weakening of CO adsorption. Additionally, the CO adsorption properties of the surface alloys are also influenced by electronic ligand and strain effects, but on a lower scale. The results are discussed in comparison with previous findings on PdAg bulk alloys, supported PdAg catalysts and PdAu/Pd(111) model systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call