Abstract
The nature of the interaction between human hemoglobin and C.I. acid red 27 was investigated systematically by ultraviolet–vis absorbance, circular dichroism, fluorescence, synchronous fluorescence, and three-dimensional fluorescence spectra techniques at pH 7.40. The quenching mechanism, binding constants, and the number of binding sites were determined by the quenching of human hemoglobin fluorescence in presence of C.I. acid red 27. The results showed that the nature of the quenching was of static type and the process of binding acid red 27 on human hemoglobin was a spontaneous molecular interaction procedure. The electrostatic and hydrophobic interactions played a major role in stabilizing the complex; The distance r between donor and acceptor was obtained to be 4.40 nm according to Förster’s theory; The effect of acid red 27 on the conformation of human hemoglobin was analyzed using synchronous fluorescence, circular dichroism and three-dimensional fluorescence spectra.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Photochemistry & Photobiology, B: Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.