Abstract

Diabetes is a disease characterized by an excessive level of glucose in the bloodstream, which may be a result of improper insulin secretion. Insulin is secreted in a bursting behavior of pancreatic $\beta$-cells in islets, which is affected by oscillations of cytosolic calcium concentration. We used the Dual Oscillator Model to explore the role of calcium in calcium oscillation independent and calcium oscillation dependent modes and the synchronization of metabolic oscillations in electrically coupled $\beta$-cells. We implemented a synchronization index in order to better measure the synchronization of the $\beta$-cells within an islet and we studied heterogeneous modes of coupled $\beta$-cells. We saw that increasing calcium coupling or voltage coupling in heterogeneous cases increases synchronization; however, in certain cases increasing both voltage and calcium coupling causes desynchronization. To better represent an islet, we altered previous code to allow for a greater number of cells to be simulated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.