Abstract

Bordetella pertussis, the etiologic agent of whooping cough, produces a calmodulin-sensitive adenylate cyclase which elevates intracellular cAMP in a variety of eucaryotic cells. Exogenous calmodulin added to the partially purified adenylate cyclase has been shown to inhibit invasion of animal cells by this enzyme (Shattuck, R. L., and Storm, D. R. (1985) Biochemistry 24, 6323-6328). In this study, several properties of the calmodulin-sensitive adenylate cyclase are shown to be influenced by Ca2+ in the absence of calmodulin. The presence or absence of Ca2+ during QAE-Sephadex ion exchange chromatography produced two distinct chromatographic patterns of adenylate cyclase activity. Two different forms of the enzyme (Pk1 and Pk2EGTA) were isolated by this procedure. Pk1 adenylate cyclase readily elevated intracellular cAMP levels in mouse neuroblastoma cells (N1E-115) while Pk2EGTA adenylate cyclase had no effect on cAMP levels in these cells. Gel exclusion chromatography of Pk1 adenylate cyclase gave apparent Stokes radii (RS) of 43.5 A (+/- 1.3) in the presence of 2 mM CaCl2 and 33.8 A (+/- 0.94) in the presence of 2 mM EGTA [( ethylenebis (oxyethylenenitrilo)]tetraacetic acid). These Stokes radii are consistent with molecular weights of 104,000 (+/- 6,400) and 61,000 (+/- 3,600), respectively. Pk2EGTA adenylate cyclase had an apparent RS of 33.0 (+/- 1.2) (Mr = 60,600 (+/- 2,800] in the presence of Ca2+ or excess EGTA. At 60 degrees C, Pk1 adenylate cyclase exhibited a Ca2+-dependent heat stability with a half-life for loss of enzyme activity of 10.3 min in 5 mM CaCl2 and a half-life of 2.8 min in the presence of 0.1 microM CaCl2. The stability of Pk2EGTA adenylate cyclase was not affected by changes in free Ca2+. The adenylate cyclase preparations described above were submitted to sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis, and enzyme activity was recovered from gel slices by extraction with detergent containing buffers. The catalytic subunit isolated from SDS-polyacrylamide gels was activated 7-fold in the presence of Ca2+ with maximum activity observed at 1 microM free Ca2+. With both preparations, the apparent molecular weight of the catalytic subunit on SDS gels was 51,000 in the presence of 2 mM CaCl2 and 45,000 in the presence of 2 mM EGTA. The catalytic subunit of the enzyme was purified to apparent homogeneity by preparative SDS-polyacrylamide gel electrophoresis and resubmitted to SDS gel electrophoresis in the presence or absence of free Ca2+. The purified catalytic subunit also exhibited a Ca2+-dependent shift in its mobility on SDS gels.(ABSTRACT TRUNCATED AT 400 WORDS)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.