Abstract

Boron (B) is an essential element for plants and animals growth that interacts with mineral surfaces regulating its bioavailability and mobility in soils, sediments, and natural ecosystems. The interaction with mineral surfaces is quite important because of a narrow range between boron deficiency and toxicity limits. In this study, the interaction of boric acid with goethite (α-FeOOH) was measured in NaNO 3 background solution as a function of pH, ionic strength, goethite and boron concentration representing as adsorption edges and isotherms. Boron adsorption edges showed a bell-shaped pattern with maximum adsorption around pH 8.50, whereas adsorption isotherms were rather linear. The adsorption data were successfully described with the CD–MUSIC model in combination with the Extended Stern (ES) model. The charge distribution (CD) of inner-sphere boron surface complexes was calculated from the geometry optimized with molecular orbital calculations applying density functional theory (MO/DFT). The CD modeling suggested dominant binding of boric acid as a trigonal inner-sphere complex with minor contributions of a tetrahedral inner-sphere complex (at high pH) and a trigonal outer-sphere complex (at low pH). The interpretation with the CD model is consistent with the spectroscopic observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.