Abstract

A two-fluid model suitable for the calculation of the two-phase flow field around a naval surface ship is presented. This model couples the Reynolds-averaged Navier–Stokes (RANS) equations with equations for the evolution of the gas-phase momentum, volume fraction and bubble number density, thereby allowing the multidimensional calculation of the two-phase flow for monodisperse variable size bubbles. The bubble field modifies the liquid solution through changes in the liquid mass and momentum conservation equations. The model is applied to the case of the scavenging of wind-induced sea-background bubbles by an unpropelled US Navy frigate under non-zero Froude number boundary conditions at the free surface. This is an important test case, because it can be simulated experimentally with a model-scale ship in a towing tank. A significant modification of the background bubble field is predicted in the wake of the ship, where bubble depletion occurs along with a reduction in the bubble size due to dissolution. This effect is due to lateral phase distribution phenomena and the generation of an upwelling plume in the near wake that brings smaller bubbles up to the surface. © 1998 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call