Abstract

The equilibrium reactions involved in the formation of the apurinic acid (APA)-Schiff chromophores in the staining phase of the Feulgen-Schiff reaction do not allow a quantitative conversion of APA to these chromophores. By modification of the sulfite and dye concentrations and the pH of the staining reagents, or by using better solvents for pararosaniline like acetic acid or dimethylsulfoxide (DMSO) a shift of these equilibria was attempted in order to obtain a higher amount of APA-bound dye. A 40% higher absorbance, when compared with the normal Schiff-staining, was obtained in model films by staining with a saturated solution of pararosaniline in a 1:1 v/v mixture of DMSO and SO2-water, followed by rinsing in SO2-water. A doubling of the absorbance resulted in the same objects when a saturated solution of pararosaniline in a 2 M acetic acid/acetate buffer of pH 4.45 was used for staining, followed by a short rinse in SO2-water. Amino groups (as found in histones) are shown to compete with the amino groups of pararosaniline for the APA aldehydes. This effect, although causing lower staining intensities, is shown not to be the explanation for the differences in stain content found between more and less compact forms of chromatin. Depending on the pH, and dye and sulfite concentrations of the staining reagents, the following components are considered as possible contributors to the mixture of chromophores (Duijndam et al., 1973 b) formed between APA and Schiff's reagent or its modifications: 1. An acid labile component with a wavelength of maximal absorbance (lambda max) near 510 nm; its structure is probably the azomethine--CH=N--; 2. A relatively acid stable component with a high value of molecular absorbance (epsilon), an lambda max near 570 nm and possibly having an enamine structure--CH=CH--NH--; 3. A component with intermediate acid stability, low epsilon, and lambda max near 540 nm, and which is probably an alkylsulfonic acid --CH(SO3H)--NH--compound. Small differences in the staining conditions in the histochemical application of the Feulgen-Schiff reaction may cause a shift in the ratio between especially components 2 and 3, resulting in variations in stain content and in lambda max.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.