Abstract

In previous studies, we have demonstrated that the interaction of ryanoids with the sarcoplasmic reticulum Ca(2+)-release channel [ryanodine receptor (RyR)] incorporated into planar lipid bilayers reduced the effectiveness of tetraethylammonium (TEA(+)) as a blocker of K(+) translocation (J Gen Physiol 117: 385-393, 2001). In the current study, we investigated both the effect of TEA(+) on [(3)H]ryanodine binding and the actions of this impermeant cation on the interaction of the reversible ryanoid 21-amino-9alpha-hydroxyryanodine with individual, voltage-clamped RyR channels. A dose-dependent inhibition of [(3)H]ryanodine binding was observed in the presence of TEA(+), suggesting that the cation and alkaloid compete for access to a common site of interaction. Single channel studies gave further insights into the mechanism of the competition between the two classes of ligands. TEA(+) decreases the association rate of 21-amino-9alpha-hydroxyryanodine with its receptor, whereas the dissociation rate of the ryanoid from the channel was unaffected. Our results demonstrate that TEA(+) inhibits both K(+) translocation through RyR, and ryanoid interaction at the high affinity ryanodine site on the channel. These actions involve binding of TEA(+) to different, but weakly interacting, sites in the RyR channel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.