Abstract
It has been assumed that substitution of homologous regions of transforming growth factor alpha (TGF-alpha) into epidermal growth factor (EGF) can be used to probe ligand-receptor recognition without detrimental effects on ligand characteristics for the human EGF receptor (EGFR). We show that a chimera of murine (m) EGF in which the carboxyl-terminal tail is substituted for that of TGF-alpha (mEGF/TGF-alpha44-50) results in complex features that belie this initial simplistic assumption. Comparison of EGF and mEGF/TGF-alpha44-50 in equilibrium binding assays showed that although the relative binding affinity of the chimera was reduced 80-200-fold, it was more potent than EGF in mitogenesis assays using NR6/HER cells. This superagonist activity could not be attributed to differences in ligand processing or to binding to other members of the c-erbB family. It appeared to be due, in part, to choice of an EGFR-overexpressing target cell where high receptor number compensated for the low affinity of the ligand; it also appeared to be related to the ability of the chimera to activate the EGFR tyrosine kinase. Thus, when EGFR autophosphorylation was measured, mEGF/TGF-alpha44-50 was more potent than EGF, despite its low affinity. When tested using chicken embryo fibroblasts, substitution of the TGF-alpha carboxyl-terminal tail into mEGF failed to enhance its binding affinity for chicken EGFRs; however, the chimera was intermediate in potency between TGF-alpha and mEGF in mitogenesis assays. Our results suggest a contextual requirement for EGFR recognition which is ligand-specific. Further, the unpredictable responses to chimeric ligands underline the complex nature of the processes of ligand recognition, receptor activation, and the ensuing cellular response.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.