Abstract

Aqueous deoxyhemoglobin solutions (2 mg/ml) were gamma-irradiated by a 60Co source in the presence of methanol, ethanol, 1-butanol and t-butanol under N2O or argon. The effects of the interaction of the particular alcohol radical species with hemoglobin were determined according to the detected spectral alterations in the visible range. The amounts of stable final products in the form of methemoglobin (MetHb) and the sum of hemichromes and cholehemichromes (Hemichr) were estimated in irradiated preparations. For preparations irradiated under N2O, the radiation yield for MetHb formation was three-fold lower in the presence of ethanol and 1-butanol [G(MetHb) = 0.33] compared with preparations irradiated in the presence of t-butanol or without alcohol [G(MetHb) = 1.00]. The yield of hemichromes and cholehemichromes in preparations irradiated under N2O increased in the order: ethanol (G = 0.38), 1-butanol (G = 0.52), t-butanol (G = 0.59), and in the absence of alcohol (G = 0.72). The high effectivity of t-butanol radicals for iron oxidation and Hb destruction is apparently due to their oxidative properties, compared with the other radicals. It was also shown that ethanol radicals reduce MetHb 10 times more effectively [G(Fe(II) = 2.5] compared with t-butanol radicals [G(Fe(II)) = 0.24]. For samples irradiated under argon all the observed changes were similar, regardless of the presence of alcohols. This effect can be attributed to reconstruction reactions of Hb molecules in the presence of both oxidizing (OH or t-but.) and reducing agents (e-aq). The following sequence of effectivities of water radiolysis products and secondary alcohol radicals for hemoglobin destruction has been identified: meth; eth.-->1-but.-->e-aq-->t-but.-->.OH.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.