Abstract

The effects of binding and conformational changes induced by the neutral amphiphilic ligand [5-(alkoxy)naphthalen-1-amine] with different alkyl chain lengths on bovine serum albumin (BSA) have been studied using UV-visible and fluorescence spectroscopic methods. The BSA fluorescence exhibits appreciable bathochromic shift along with a reduction in fluorescence intensity and fluorescence lifetime upon binding with ligands. Ligand quenches the fluorescence of BSA in a concentration-dependent manner and deviates positively from the linear Stern-Volmer equation. The calculated quenching rate constants and binding constants were shown to depend entirely on the alkyl chain length of the ligands. After binding of probes with protein, the distance between the donor and acceptor was calculated using Forster theory. Ligands bind near Trp-134 in the subdomain IA of the native BSA and they become accessible to Trp-212 when BSA gets unfolded. The spectral data well supports the idea that BSA changes its three-dimensional conformation incrementally during its unfolding.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.