Abstract

It has been confirmed that skeletal muscle cells have the capability to receive foreign plasmid DNA (pDNA) and express functional proteins. This provides a promisingly applicable strategy for safe, convenient, and economical gene therapy. However, intramuscular pDNA delivery efficiency was not high enough for most therapeutic purposes. Some non-viral biomaterials, especially several amphiphilic triblock copolymers, have been shown to significantly improve intramuscular gene delivery efficiency, but the detailed process and mechanism are still not well understood. In this study, the molecular dynamics simulation method was applied to investigate the structure and energy changes of the material molecules, the cell membrane, and the DNA molecules at the atomic and molecular levels. From the results, the interaction process and mechanism of the material molecules with the cell membrane were revealed, and more importantly, the simulation results almost completely matched the previous experimental results. This study may help us design and optimize better intramuscular gene delivery materials for clinical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.