Abstract

Electrolyte engineering is a feasible strategy to realize high energy density lithium metal batteries. However, stabilizing both lithium metal anodes and nickel-rich layered cathodes is extremely challenging. To break through this bottleneck, a dual-additives electrolyte containing fluoroethylene carbonate (10vol.%) and 1-methoxy-2-propylamine (1vol.%) in conventional LiPF6 -containing carbonate-based electrolyte is reported. The two additives can polymerize and thus generate dense and uniform LiF and Li3 N-containing interphases on both electrodes' surfaces. Such robust ionic conductive interphases not only prevent lithium dendrite formation in lithium metal anode but also suppress stress-corrosion cracking and phase transformation in nickel-rich layered cathode. The advanced electrolyte enables Li||LiNi0.8 Co0.1 Mn0.1 O2 stably cycle for 80 cycles at 60mAg-1 with a specific discharge capacity retention of 91.2% under harsh conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call