Abstract

BackgroundPreterm birth is the primary cause of infant death worldwide. A short cervix in the second trimester of pregnancy is a risk factor for preterm birth. In specific patient cohorts, vaginal progesterone reduces this risk. Using 16S rRNA gene sequencing, we undertook a prospective study in women at risk of preterm birth (n = 161) to assess (1) the relationship between vaginal microbiota and cervical length in the second trimester and preterm birth risk and (2) the impact of vaginal progesterone on vaginal bacterial communities in women with a short cervix.ResultsLactobacillus iners dominance at 16 weeks of gestation was significantly associated with both a short cervix <25 mm (n = 15, P < 0.05) and preterm birth <34+0 weeks (n = 18; P < 0.01; 69% PPV). In contrast, Lactobacillus crispatus dominance was highly predictive of term birth (n = 127, 98% PPV). Cervical shortening and preterm birth were not associated with vaginal dysbiosis. A longitudinal characterization of vaginal microbiota (<18, 22, 28, and 34 weeks) was then undertaken in women receiving vaginal progesterone (400 mg/OD, n = 25) versus controls (n = 42). Progesterone did not alter vaginal bacterial community structure nor reduce L. iners-associated preterm birth (<34 weeks).ConclusionsL. iners dominance of the vaginal microbiota at 16 weeks of gestation is a risk factor for preterm birth, whereas L. crispatus dominance is protective against preterm birth. Vaginal progesterone does not appear to impact the pregnancy vaginal microbiota. Patients and clinicians who may be concerned about “infection risk” associated with the use of a vaginal pessary during high-risk pregnancy can be reassured.

Highlights

  • Preterm birth is the primary cause of infant death worldwide

  • The vaginal microbiome at 16 weeks in high-risk pregnancy Using hierarchical clustering analysis (HCA) of normalized genera taxonomy read counts, vaginal swab samples were classified into three categories; normal (>90% Lactobacillus spp., 147/161, 91%), intermediate (50–90% Lactobacillus spp., 5/161, 3%), and dysbiotic (

  • We demonstrate a significant association between L. iners dominance of the vaginal microbiome at 16 weeks of gestation with subsequent preterm birth and show that L. crispatus dominance correlates with reduced risk or preterm birth

Read more

Summary

Introduction

Preterm birth is the primary cause of infant death worldwide. A short cervix in the second trimester of pregnancy is a risk factor for preterm birth. Using 16S rRNA gene sequencing, we undertook a prospective study in women at risk of preterm birth (n = 161) to assess (1) the relationship between vaginal microbiota and cervical length in the second trimester and preterm birth risk and (2) the impact of vaginal progesterone on vaginal bacterial communities in women with a short cervix. Preterm birth before 37 weeks of gestation is the leading cause of death among children under the age of five [1]. A commonly used classification scheme involves hierarchical clustering analysis of 16S rRNA gene sequencing data into community state types (CSTs) as first described by Ravel and colleagues [13]. CST IV describes microbial communities largely devoid of Lactobacillus species and enriched mainly in anaerobic bacteria (CST IV)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call