Abstract

AbstractThe interaction between the tropopause inversion layer (TIL) and the inertial gravity wave (IGW) activities is first presented by using a high vertical resolution radiosonde data set at a midlatitude station, Boise, Idaho (43.57°N, 116.22°W), for the period 1998–2008. The tropopause‐based vertical coordinate is used for the TIL detection, and for meticulously studying the IGW variation around the TIL, the broad spectral method is used for the IGW extraction. Generally, the TIL at the midlatitude station is stronger and thicker in winter and spring, which is consistent with previous studies. Our study confirmed the intense interaction between the TIL and IGW. It is found that the TIL not only could inhibit the upward propagation of IGWs from below but also imply the possible excitation links between the TIL and IGW. The results also indicate that the enhanced wind shear layer just 1 km above the tropopause may result in instability and finally leads to the IGW breaking and intensive turbulence. Subsequently, the IGW‐induced intensive turbulence leads to strong wave energy dissipation and a downward heat flux. This downward heat transportation could significantly cool the tropopause, while it has only negligible thermal effect on the atmosphere above the tropopause. Then, the IGW‐induced cooling at the tropopause makes the tropopause colder and sharper and finally forms the TIL. These suggest besides previously proposed mechanisms that IGWs also contribute greatly to the formation of TIL, which is consistent with a recent related simulation study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.