Abstract
ABSTRACTSalinity aggravates B toxicity symptoms in several plant species. In the present study the interactive effects of B toxicity and salinity stresses on the subcellular distribution of boron, cations and proteins in basal and apical leaf sections of wheat were investigated. High B supply increased total B concentrations in all leaf parts, but values remained below 25 mg B kg−1 dry weight (DW) in basal sections, whereas they reached more than 600 mg B kg−1 DW in leaf tips. In basal leaf sections intercellular soluble B concentrations closely reflected the external supply, whereas intracellular soluble B concentrations remained lower by a factor of two, indicating some retention of excess B in the apoplast. Combined salinity and B toxicity stresses significantly increased soluble B concentrations in inter‐ and intracellular compartments of basal leaf sections in comparison with either stress alone, probably related to salinity‐induced changes in water status. The combined stresses also induced quantitative and qualitative changes in inter‐, but not intracellular protein composition. Most obvious was the induction of a 25 kDa protein and an increase in amount of a 33 kDa protein. It is suggested that these changes might be due to structural modifications of the cell wall. The concentration of soluble boron in cells is proposed to be an indicator of boron toxicity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.