Abstract
We developed a novel technique of hybridizing calcium phosphate (CaP) with bioorganic soft tissue using an alternating soaking process. By this technique, we hybridized CaP with a grafted tendon tissue to bond with a bone tunnel. Tendons were soaked in Ca and NaHPO 4 solutions alternately for 10 min. Needle-like CaP crystals 30–50 nm in length including low-crystalline apatite were deposited on and between collagen fibrils from the surface to 200 μm deep in the tendon. In light and transmission electron microscopic images, osteoclast-like cells and osteoblasts appeared on the implanted tendon and osteoid was observed on the tendon surface at 1 week postoperatively. At 2 weeks postoperatively, osteoclast-like cells resolved the tendon by forming Howship's lacuna-like spaces on the surfaces and osteoblasts formed osteoid in these spaces. Direct bonding between the implanted tendon and the newly formed bone was observed. At 3 weeks postoperatively, thick newly formed bone firmly bonded to tendon surface. From these results, we conclude that the tendons prepared by an accelerated CaP hybridization method efficiently enhance osteoclast-like cells and osteoblasts to bond the implanted tendons to newly formed bone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.