Abstract

Understanding the interaction mechanism between nucleotide bases (NBs) and carbon substrate nanomaterials is a major scientific issue in the field of bioactive molecule identification, which is of great significance for digital diagnosis, gene sequencing, drug development and human health. In this work, the adsorption behavior of five typical NBs molecules A, T, C, G and U on the surface of the widely used carbon-based nanomaterials such as fullerene, carbon nanotubes and graphene, was investigated comprehensively from first-principle views. The adsorption of NBs molecules over the surface of these nano-carbon materials was described rationally and intuitively from both quantitative and qualitative perspectives. The adsorption ability and binding intensity of NBs over the three carbon-based substrates showed obvious population differences. This was mainly because the three carbon materials had different periodic dimensions and thus the electron motion and surface electron properties were affected by the low-dimensional quantum confined effect. The above results indicated the dimension-dominant effect of the interaction between NBs and nano-carbon materials. Through energy decomposition analysis, it was further quantitatively explained that the interaction was dominated by dispersion force. By means of reduced density gradient, Van der Waals surface penetration and charge differential density analysis, the regions, types and intensities of the adsorption for NBs over carbon substrates were intuitively described. This work was important to understand the dimension-dominant effect of the interaction between NBs and carbon nanomaterials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.