Abstract

Most of the modulating effects of cannabinoids on pain are through putative cannabinoid CB1 and CB2 receptors. However, the involvement of other receptors is also suggested. Cannabinoid compounds with analgesic activity such as palmitoylethanolamide (PEA) show low affinity to CB1 and CB2 receptors, yet selectively activate GPR55 receptors. The objective of the present study was to evaluate the possible role of spinal CB1 and GPR55 receptors on antinociceptive activity of PEA in formalin test as well as in the spinal expression of IL1-β in rat. Intrathecal (i.t.) administration of PEA (1, 10μg) significantly decreased both pain-related scores in formalin test and IL1-β expression in rat spinal cord. Pretreatment of rats with low doses of CB1 receptor antagonist/GPR55 receptor agonist AM251 (10, 100ng; i.t.), did not attenuated the effect of PEA, yet even significantly increased the effect of PEA on IL1-β expression in rat spinal cord. Interestingly, i.t. administration of low doses of AM251 per se significantly decreased both pain related behavior and spinal IL1-β expression in formalin test. These findings suggest the possible involvement of receptors other than CB1 receptors in spinal pain pathways, such as GPR55, in pain modulating activity of cannabinoids.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.