Abstract

The interaction between 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP) and the rutile TiO 2(110)–(1 × 1) surface under ultrahigh vacuum (UHV) conditions was investigated using X-ray photoemission spectroscopy (XPS), ultraviolet photoemission spectroscopy (UPS), near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, and density functional theory (DFT) calculations. The NEXAFS results showed that HHTP molecules formed a submonolayer and a monolayer that aligned along the [001]-direction with, respectively, a more or less flat downward orientation and a more upright orientation to the TiO 2 surface. The HHTP molecules that aligned along the [001]-direction were most likely grafted onto the TiO 2(110) surface by a bidentate bridge between each of the oxygen atoms of one of the catechol units within the HHTP molecule and two adjacent Ti(5f) 4+ ions on the TiO 2(110) surface. The coordination is non-dissociative in the case of the submonolayer, but dissociative in the monolayer, according to the analysis of the C1s XPS, UPS, C1s NEXAFS data and complementary DFT calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.