Abstract

This work sheds light on the relationship between the quantities of synthesized core shell Gd2O3 added to epoxy matrix and the mechanical and X-ray attenuation properties of particulate epoxy composite. Then, an optimal geometric design of non-lead based X-ray protective material with light weight per volume unit is prepared. A plateau with 28–30% increments in the value of fracture toughness (KIC) is observed with a specific addition of 0.08–0.1 volume fraction (φS) of Gd2O3 particles in pure epoxy. The same quantity of particles also optimally raises the critical strain energy release rate and Young’s modulus of epoxy by approximately 22–24% and 18–25% respectively. A 16mm thick sheet of fabricated filled composite at (φS) of 0.08 and 0.1 can shield greater than 95% and 99% respectively of a primary X-ray beam in the range of 60–120kVp. At the same X-ray attenuation (99% attenuation), the specimen is 7, 8.5 and 16 times lighter than wood, glass, and concrete, respectively. At 0.5mm Pb-equivalence, the composite also has 4.5–19.4% less weight per unit area than current commercial non-lead products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.