Abstract

The interaction between a screw dislocation and a circular nano-inhomogeneity with a semi-infinite wedge crack penetrating the interface is investigated. By using Riemann-Schwartz’s symmetry principle integrated with the analysis of singularity of complex functions and the conformal mapping technique, the analytical expressions of the stress field in both the circular nano-inhomogeneity and the infinite matrix, the image force acting on the screw dislocation and the stress intensity factor at the crack tip are obtained. The influence of elastic mismatch of materials, inhomogeneity size, interface stress, wedge crack opening angle and the relative location of dislocation on the image force and on the equilibrium position of the screw dislocation and the shielding effect of the screw dislocation are discussed in detail. The results show that interface stress has a significant impact on the movement of dislocations near the interface, and the effect of interface stress enhances when the inhomogeneity radius decreases. With the decrease in the wedge crack opening angle, the influence of interface stress on the movement of the screw dislocation and on the SIF enhances. With the increment of the relative shear modulus, the influence of interface stress weakens with the screw dislocation locating in the inhomogeneity and strengthens with the screw dislocation locating in the matrix. When the screw dislocation is located in the inhomogeneity, the positive (negative) interface stress increases (decreases) the shielding effect, while this phenomenon is opposite when the screw dislocation locates in the matrix.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.