Abstract

During the evening of 9 April and the morning of 10 April 1969, the twilight zenith intensity of the atomic oxygen red line OI( 3P- 1D) at 6300 Å was measured at the Blue Hill Observatory (42°N, 17°W). At the same time incoherent scatter radar data were being obtained at the Millstone Hill radar site 50 km distant. We have used a diurnal model of the mid-latitude F-region to calculate the ionospheric structure over Millstone Hill conditions similar to 9–10 April 1969. The measured electron temperature, ion temperature, and electron density at 800 km are used as boundary conditions for the model calculations. The diurnal variation of neutral composition and temperature were obtained from the OGO-6 empirical model and the neutral winds were derived from a semiempirical three-dimensional dynamic model of the neutral thermosphere. The solar EUV flux was adjusted to yield reasonable agreement between the calculated and observed ionospheric properties. This paper presents the results of these model computations and calculations of the red line intensity. The 6300 Å emission includes contributions from photoelectron excitation, dissociative recombination, Schumann-Runge photodissociation and thermal electron impact. The variations of these four components for morning and evening twilight between 90–120° solar zenith angles, and their relative contributions to the total 6300 Å emission line intensity, are presented and the total is compared to the observations. For this particular day the Schumann-Runge photodissociation component, calculated using the solar fluxes tabulated by Ackermann (1970), is the dominant component of the morning twilight 6300 Å emission. During evening twilight it is necessary to utilize a lower O 2 density than for the morning twilight in order to bring the calculated and observed 6300 Å emission rates into agreement. The implication that there may be a diurnal variation in the O 2 density at the base of the thermosphere is discussed in the light of available experimental data and current theoretical ideas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.