Abstract

Knowledge of the spatial distribution of intensity loss from an ultrasonic beam is critical for predicting lesion formation in focused ultrasound (US) surgery (FUS). To date, most models have used linear propagation models to predict intensity profiles required to compute the temporally varying temperature distributions used to compute thermal dose contours. These are used to predict the extent of thermal damage. However, these simulations fail to describe adequately the abnormal lesion formation behaviour observed during ex vivo experiments in cases for which the transducer drive levels are varied over a wide range. In such experiments, the extent of thermal damage has been observed to move significantly closer to the transducer with increased transducer drive levels than would be predicted using linear-propagation models. The first set of simulations described herein use the KZK (Khokhlov–Zabolotskaya–Kuznetsov) nonlinear propagation model with the parabolic approximation for highly focused US waves to demonstrate that both the peak intensity and the lesion positions do, indeed, move closer to the transducer. This illustrates that, for accurate modelling of heating during FUS, nonlinear effects should be considered. Additionally, a first order approximation has been employed that attempts to account for the abnormal heat deposition distributions that accompany high transducer drive level FUS exposures where cavitation and boiling may be present. The results of these simulations are presented. It is suggested that this type of approach may be a useful tool in understanding thermal damage mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.